Search results for "water stability"

showing 5 items of 5 documents

Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater

2017

Results obtained from three aerobic granular sludge reactors treating brewery wastewater are presented. Reactors were operated for 60 d days in each of the two periods under different cycle duration: (Period I) short 6 h cycle, and (Period II) long 12 h cycle. Organic loading rates (OLR) varying from 0.7 kg COD m-3 d-1 to 4.1 kg COD m-3 d-1 were tested. During Period I, granules successfully developed in all reactors, however, results revealed that the feast and famine periods were not balanced and the granular structure deteriorated and became irregular. During Period II at decreased 12 h cycle time, granules were observed to develop again with superior structural stability compared to the…

Environmental Engineering0208 environmental biotechnologySewageBioengineering02 engineering and technologyBiological Oxygen Demand AnalysisWastewater010501 environmental sciencesWaste Disposal Fluid01 natural sciencesIndustrial wastewater treatmentBioreactorsExtracellular polymeric substanceBioreactorFood IndustryWaste Management and Disposal0105 earth and related environmental sciencesBiological Oxygen Demand AnalysisSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleBacteriaSewageRenewable Energy Sustainability and the Environmentbusiness.industryChemistryGranule (cell biology)Environmental engineeringGeneral MedicinePulp and paper industryAerobiosisCarbon020801 environmental engineeringWastewaterExtracellular polymeric substances Feast/famine Aerobic granular sludge Industrial wastewater StabilityFaminebusinessBioresource Technology
researchProduct

Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams

2019

L.N.M and R.E.M wish to acknowledge the financial support from the EPSRC industrial CASE award (grant EP/N50936X/1). A.T and G.B would like to thank the financial support from the Fondo per il finanziamento delle attività base di ricerca (grant PJ-RIC-FFABR_2017). Metal-organic frameworks (MOFs) are a class of porous materials that show promise in the removal of Toxic Industrial Chemicals (TICs) from contaminated airstreams, though their development for this application has so far been hindered by issues of water stability and the wide availability and low cost of traditionally used activated carbons. Here a series of three MOF-activated carbon composite materials with different MOF to carb…

Materials scienceChemistry(all)Activated carbonNDASchemistry.chemical_elementgas adsorption010402 general chemistry01 natural sciencesCatalysisCatalysisAmmoniachemistry.chemical_compoundmedicineactivated carbonporous materialPorous materialsQDComposite materialwater stability010405 organic chemistrybusiness.industryGeneral ChemistryChemical industryWater stabilityContaminationmetal-organic frameworkMetal-organic frameworksQD Chemistry0104 chemical sciencesGas adsorptionchemistryMetal-organic frameworkbusinessPorous mediumCarbonActivated carbonmedicine.drug
researchProduct

Surface functionalization of metal-organic frameworks for improved moisture resistance

2018

Metal-organic frameworks (MOFs) are a class of porous inorganic materials with promising properties in gas storage and separation, catalysis and sensing. However, the main issue limiting their applicability is their poor stability in humid conditions. The common methods to overcome this problem involve the formation of strong metal-linker bonds by using highly charged metals, which is limited to a number of structures, the introduction of alkylic groups to the framework by post-synthetic modification (PSM) or chemical vapour deposition (CVD) to enhance overall hydrophobicity of the framework. These last two usually provoke a drastic reduction of the porosity of the material. These strategie…

Materials scienceSurface PropertiesGeneral Chemical EngineeringQuímica organometàl·lica02 engineering and technologyChemical vapor depositionengineering.material010402 general chemistryHydrophobic coating01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyCatalysisAdsorptionCoatingCompostos orgànicsPorosityAlkylMetal-Organic FrameworksCatecholase biomimeticschemistry.chemical_classificationGeneral Immunology and MicrobiologyGeneral NeuroscienceWaterWater stabilityMetal-organic frameworks021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryPolymerizationChemical engineeringSurface functionalizationengineeringSurface modificationMetal-organic frameworkAdsorption0210 nano-technologyOxidation-ReductionPorosityFunctionalized catechols
researchProduct

Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance

2021

Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal–organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

Materials scienceInorganic chemistry02 engineering and technologyMetal−organic frameworks010402 general chemistryHydrophobic coating01 natural sciencesCatalysischemistry.chemical_compoundGeneral Materials ScienceMaterialsCatecholase biomimeticsCatecholMoistureSorptionQuímicaWater stability021001 nanoscience & nanotechnologySuperhydrophobic coating0104 chemical scienceschemistrySurface functionalizationSurface modificationMetal-organic framework0210 nano-technologyScience technology and societyACS Applied Materials & Interfaces
researchProduct

Cadmium Metal–Organic Frameworks Based on Ditopic Triazamacrocyclic Linkers: Unusual Structural Features and Selective CO 2 Capture

2017

International audience; Two three-dimensional cadmium metal organic frameworks with general formula [Cd-2(L-1)(H2O)(3)](NO3)(0.7)(HCOO)(0.2)Br-0.1 (Cd2L1, L-1 = 1,4,7-tris(4-carboxybenzy1)-1,4,7-triazacyclononane) and Cd(HL2)(H2O)(2) (CdL2, L-2 = 1,4,7-tris(3-(4-benzoate)prop-2-yn-1-yl)-1,4,7-triazacydononane) based on 1,4,7-triazacyclononane N-functionalized by different arylcarboxylic acids were prepared under solvothermal conditions and characterized by single crystal X-ray analysis and porosity measurements. The crystal structure of Cd2L1 reveals a cationic net with a bcs topology,. and nodes are constituted by dinuclear cadmium complexes, in which each cadmium atom adopts a hexacoordin…

zeolitic imidazolate frameworksInorganic chemistrycopper-complexeschemistry.chemical_element02 engineering and technologyCrystal structure010402 general chemistry01 natural sciences[ CHIM ] Chemical Sciencescarbon-dioxide capturechemistry.chemical_compound[ CHIM.CRIS ] Chemical Sciences/Cristallography[CHIM.CRIS]Chemical Sciences/Cristallography[CHIM]Chemical Sciencesambient conditionsGeneral Materials ScienceCarboxylatebuilding unitsPorositywater stabilityTopology (chemistry)CadmiumCationic polymerizationgas-adsorptionGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter Physicsporous coordination polymers0104 chemical sciences3. Good healthCrystallographysingle-crystalchemistrystructure validation[ CHIM.MATE ] Chemical Sciences/Material chemistryAmine gas treating0210 nano-technologySingle crystal
researchProduct